Thermal Conversion of Biomass

A wide range of technologies exists to convert the energy stored in biomass to more useful forms of energy. These technologies can be classified according to the principal energy carrier produced in the conversion process. Carriers are in the form of heat, gas, liquid and/or solid products, depending on the extent to which oxygen is Read More …

Biomass Gasification Process

Biomass gasification involves burning of biomass in a limited supply of air to give a combustible gas consisting of carbon monoxide, carbon dioxide, hydrogen, methane, water, nitrogen, along with contaminants like small char particles, ash and tars. The gas is cleaned to make it suitable for use in boilers, engines and turbines to produce heat Read More …

The Complete Beginner’s Guide to Furnaces

Indoor heating is essential to the comfort and even health of the occupants of a house during winter. The core of any heating system is the furnace, which in most homes is located somewhere outside the main house or in the basement. This is so as to keep it out of the way but also Read More …

Renewable Energy in Refugee Camps

Access to clean and affordable energy is a prerequisite for sustainable development of mankind, and refugees are no exception. Refugee camps across the world house more than 65 million people, and almost all refugee camps are plagued by fuel poverty. Needless to say, urgent measure are required to make camps livable and sustainable. Rapid advancements Read More …

Weather-Resistant Building Materials for 2020

Homeowners are always wary of extreme weather conditions such as flooding, severe rain, excess heat, and extreme coastal surges. Extreme weather can either damage the exteriors of a home or make the indoor temperatures too hot or too cold to bear. That leads to expensive repairs or high costs of energy. To protect a home Read More …

Waste to Energy Conversion Routes

Waste-to-energy is the use of modern combustion and biological technologies to recover energy from urban wastes. There are three major waste to energy conversion routes – thermochemical, biochemical and physico-chemical. Thermochemical conversion, characterized by higher temperature and conversion rates, is best suited for lower moisture feedstock and is generally less selective for products. On the Read More …

Trends in Utilization of Biogas

The valuable component of biogas is methane (CH4) which typically makes up 60%, with the balance being carbon dioxide (CO2) and small percentages of other gases. The proportion of methane depends on the feedstock and the efficiency of the process, with the range for methane content being 40% to 70%. Biogas is saturated and contains Read More …

4 Hacks to Make Your Next Home Greener

There is a huge spotlight on the construction industry when it comes to green initiatives – and rightly so. After all, this is one of the biggest contributors to all of the sustainable problems that the world faces. However, this increased focus does prompt some problems. It can make some people believe that going green Read More …

Biomass Cogeneration Systems

Biomass fuels are typically used most efficiently and beneficially when generating both power and heat through biomass cogeneration systems (also known as combined heat and power or CHP system). Biomass conversion technologies transform a variety of wastes into heat, electricity and biofuels by employing a host of strategies. Conversion routes are generally thermochemical or biochemical, Read More …

Everything You Need to Know About Solar and The Urban Heat Island Effect

As cities grow, open spaces, trees and other greenery, and other naturally occurring surfaces diminish, replaced by concrete and asphalt surfaces. When this happens, the heat absorbed by these surfaces has nowhere to go, and so is radiated and reflected into the immediate surrounding areas. This creates an urban heat island. This leads to an Read More …

Related Posts Plugin for WordPress, Blogger...